The 3D Happel model for complete isotropic Stokes flow
نویسندگان
چکیده
The creeping flow through a swarm of spherical particles that move with constant velocity in an arbitrary direction and rotate with an arbitrary constant angular velocity in a quiescent Newtonian fluid is analyzed with a 3D sphere-in-cell model. The mathematical treatment is based on the two-concentric-spheres model. The inner sphere comprises one of the particles in the swarm and the outer sphere consists of a fluid envelope. The appropriate boundary conditions of this non-axisymmetric formulation are similar to those of the 2D sphere-incell Happel model, namely, nonslip flow condition on the surface of the solid sphere and nil normal velocity component and shear stress on the external spherical surface. The boundary value problem is solved with the aim of the complete Papkovich-Neuber differential representation of the solutions for Stokes flow, which is valid in non-axisymmetric geometries and provides us with the velocity and total pressure fields in terms of harmonic spherical eigenfunctions. The solution of this 3D model, which is self-sufficient in mechanical energy, is obtained in closed form and analytical expressions for the velocity, the total pressure, the angular velocity, and the stress tensor fields are provided.
منابع مشابه
Scientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملInvestigation of electrokinetic mixing in 3D non-homogenous microchannels
A numerical study of 3D electrokinetic flows through micromixers was performed. The micromixers considered here consisted of heterogeneous rectangular microchannels with prescribed patterns of zeta-potential at their walls. Numerical simulation of electroosmotic flows within heterogeneous channels requires solution of the Navier-Stokes, Ernest-Plank and species concentration equations. It is kn...
متن کاملTurbulence Model Comparison for Compact Plate Heat Exchanger Design Application
In the framework of the Gas-Power Conversion System for the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) project design, works done at CEA are focused on the design of the sodium-gas heat exchanger. Compact plate heat exchangers are indicated as the most suitable technology for such applications. An innovative compact heat exchanger geometry is proposed in this pa...
متن کامل3D Numerical Simulation of the Separated Turbulent Shallow Flow around a Single Side Obstacle
In this paper, the performance of Reynolds Averaged Navier Stokes (RANS) simulations was evaluated to predict the flow structure developed by the presence of a sidewall obstruction in a uniform open-channel shallow flow. The study of these flow structures is important because they present in several real world configurations, such as groynes in rivers, where the erosion processes, mass transpor...
متن کاملCollision Statistics of Inertial Particles in Two-Dimensional Homogeneous Isotropic Turbulence with an Inverse Cascade
This study investigates the collision statistics of inertial particles in inverse-cascading two-dimensional (2D) homogeneous isotropic turbulence by means of a direct numerical simulation (DNS). A collision kernel model for small Stokes number (St) particles in 2D flows is proposed based on the model of Saffman & Turner (1956) (ST56 model). The DNS results agree with this 2D version of the ST56...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004